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On the Existence of Spurious Modes In
Battle—Lemarie Based MRTD

Costas D. Sarris and Linda P. B. Katekellow, IEEE

Abstract—A distinction between the effects of inaccuracy of are considered and discretized following the moment method
the Battle—Lemarie WaVE|(.3t based_ multiresolu_tion time domain based technique of [1]. As an example, keeping the notation
(W-MRTD) scheme for high spatial frequencies and spurious ; congistence with [1], the electric field compondit s first

modes is drawn and explained in this letter. Investigating the . .
performance of the scheme under various excitation methods, it €XPanded in terms of Battle-Lemarie scalfng, } and wavelet

is concluded that what was described earlier in the literature as 1%} functions in space and pulse functidisin time:

a spurious mode effect actually corresponds to alias frequencies

stemming from the excitation of higher order modes by the E(z,t)= Z {nEﬁﬁ(j)m(x) +n Eﬁ;%/;m(x)}hn(t) 3)
wavelets, given that the latter are spectrally supported at higher
wavenumbers.

n,m

Index Terms—MRTD, multiresolution analysis, numerical dis- 7% 7 P€ing space cell and time step indices respectively. Subse-
persion. quently, the discretization of (1) and (2) via Galerkin's method
leads to update equations with respect to electric and magnetic
field scaling and wavelet expansion coefficients, of the generic
I. INTRODUCTION form
INCE its original introduction to the field of time domain

icrowave circuit characterization [1], multiresolution — nt1E;,* =n B3

analysis has attracted a wide interest among researchers, A Rl o
prompting the formulation of several numerical techniques + Ar Z a"(p)n+1/2H,‘f{+p+1/2

and the investigation of different wavelet bases. In addition, ) p==po

the dispersion analysis of the Battle—Lemarie wavelet based po—1

multiresolution time domain (W-MRTD) scheme (in [1], [2]) + % Z 3%(p) n+1/2H5{fp+1/2 (4)
has demonstrated its high linearity, that practically allows for L

a relatively coarse discretization rate. However, little attention o o

has been devoted to the explanation of the dispersion propertiddl x = ¢, ¢ for the electric field and of a similar (dual)

of MRTD, by connecting its numerical performance to waveldrm for the magnetic field. The weighted sums in (4) repre-
theory elements and thus gaining better understanding of $&t the spatial differentiation operator in the Battle-Lemarie
advantages but also its limitations. In this letter, a comprehe?@sis and includg, grid points to the left and to the right of a
sive interpretation of the dispersion behavior of W-MRTDscaling/wavelet field node, that are allowed to contribute to its
including the “spurious mode” effect which was cited in [1]ypdate (for a certain accuracy). The coefficients of these sums

is provided. Using the result of a one-dimensional dispersigke given in [1]. _ _ .
analysis, validated by a simple numerical example, it is con- For the dispersion analysis of this scheme, the conventional

cluded that there are strictly no spurious modes in W-MRTD.Fourier method [4] is adapted to the case of a multilevel
basis, as described extensively in [3]. In particular, by Fourier

transforming electric and magnetic field expansions, the expan-

sion coefficients are expressed as inverse Fourier transforms,
A one dimensional case is chosen as an appropriate vehigleterms of their spatio-temporal harmonio§¢7¢(k, w),

for the intelligible presentation of the subtle aspects of this workg . ¥(k, w). Explicitly determining the latter, yields

In particular, the equations

Il. DISPERSIONANALYSIS

{Bo, B°} = RO (B2, B}, RY = J(=k)/d(~k) ()

g 19
—EZ(.I, t):__Hy(xv t) (1)
‘gt ; 85: where” denotes a Fourier transform. Equivalently, the disper-
pn H,(z,t) =~ = E.(z,t) (2) sion relation can be derived by substituting in any two of the
¢ H o four update equations
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requiring that it admit nontrivial solutions, leads to an expres-
sion of the form

det M(X, Q) =0 @)
whereM (X, Q) is the system matrix. This procedure yields the
X = X (Q)—dispersion relationship which is plotted in Fig. 1,
along with the S-MRTD case, far = (1/,/ep)At/Ax =
0.159 25 and stencilpy = 9. Compared to the W-MRTD dis-
persion diagrams of [1], the one in Fig. 1 has a single branch
instead of two branches. This is a consequence of using a modi-
fied Fourier method in our analysis and employing the relation-
ship of the Fourier transform of scaling and wavelet functions to
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reduce the dimensionality of (7). In fact, the additional branch
of the dispersion diagram of [1] corresponds to modes that are
not excited in an MRTD mesh, as a derivation of their corrég. 1. Dispersion curves for S-MRTD and W-MRTD. FDTD and linear
sponding eigenvectors can show [3]. dispersion relationships are shown for comparison.

In order to theoretically estimate the performance of
W-MRTD based on the results of this dispersion analysis, the 12
spectral (wavenumber) domain form of the Battle-Lemarie
scaling and wavelet functiondd¢(k)|, |(k)| respectively],
depicted in Fig. 2, is inspected. It is noted that the “knee” of
the W-MRTD dispersion curve (or itsffectiveNyquist limit)

—— Scallng
= = Wavelet

08F

is at Xy, = 1.6« (its exact value is stencil-dependent). Fur- os}
thermore, the intervalgY| < = andr < |X| < 2 define the
3 dB bandwidth for¢ andz/; respectively. Hence, if the initial o4r

data (excitation) is composed of a wavelet function, the range

of the simulated wavenumbers extends beyond the effective

Nyquist limit of the scheme and therefore, frequencies that 0
correspond to wavenumbers aba¥e;, fold back, appearing )
at low frequency images of theirs (aliasing). However, this is

not a Spurlous mode effect and is rather equ|va|ent to Wh&iy. 2. Spectral domain representation of Battle—Lemarie scaling and mother
would happen if an FDTD scheme were used to simulaf@velet function. EvidentlyX = =+ is the 3-dB point for botha|, ||
wavenumbers above its Nyquist limiX¢ ).
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I1l. NUMERICAL RESULTS

For the purpose of supporting the conclusion of our disper-
sion analysis that no spurious modes exist in W-MRTD and
to provide a framework of understanding for phenomena that
were misconstrued as such, a simple numerical experiment with
easily reproducible results and comparable to the one preseritd3: Computational domain for the 1-D case study.
in [1] is analyzed. In particular, the one dimensional case study
of a domain with four cells defined by three interior scalingnagnitudes, due to the spectral “tail” of the scaling function
functions for the electric field, as shown in Fig. 3, is consideredeyond X = =. It is noted that the result of this experiment
The hard boundary conditions are imposed by means of imagenfirms the absence of the modes corresponding to the second
theory and therefore, boundary scaling function terms (showranch of the W-MRTD dispersion diagram of [1] and is
in Fig. 3 with dashed lines) are set equal to zero (because tleysistent with the dispersion analysis of this work.
are even symmetric with respect to the hard boundary). ElectricNext, a scaling and a wavelet function are used as an exci-
field wavelet and magnetic field terms are accordingly definethtion. Now that the spatial frequencies of the initial data ex-

Initially, this 1-D cavity is excited by a scaling functiontend fromX = 0to 2, all six modes4¢ = 12, 3 and 5, 6,
placed in the middle of the domain. The field is sampled &) are almost equally excited. The corresponding electric field
integer nodes of the domain and that is why the fourth and thpectrum is indicated in Fig. 4 by a dashed line. The mode de-
eighth mode (for whichX = =, 2 ) are not extracted in any noted byN = 7 in this figure may be interpreted as spurious.
case. By Fourier transforming the time domain data, the electhcfact, it comes from the inaccurate determination of the sev-
field magnitude in the frequency domain is computed arghth mode by the scheme, the error being equal26.692%.
plotted in Fig. 4 with a continuous line. As expected, moddsis noted though, that when the excitation is properly con-
corresponding to wavenumbeP§ < =« are mainly excited, fined to spatial frequencies lower tha#,, this mode is lim-
while higher order modes are also excited at significantly lowéed to an insignificant level, as the scaling excitation test case
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TABLE |
RESONANT FREQUENCIES(IN GHz) AND RELATIVE ERROR (1-D
CAVITY /SCALING + WAVELET EXCITATION)

n ]| /. | W-MRTD | ERROR (%)
1 3.747 3.750 +0.081
2 7.518 7.495 +0.305
3 11.312 11.242 +0.628
4 14.990 15.130 +0.935
5 18.737 18.938 +1.074
6 22.484 21.981 -2.237
7 26.232 19.492 -25.692

properties. As for the seventh mode resonant frequency, it is ob-
Fig. 4. Semi-logarithmic plot of the electric field magnitude for the case Stu(yerved that since its Corresponding wavenumber is above the ef-
of Fig. 3, under scaling (—: continuous line) and scaling and wavelet (- -: daShFedCtive Nyquist limit of W-MRTD. it is reflected on its alias just

line) excitation.

in front of the fifth mode resonant frequency. Finally, numerical

values for all points that are indicated in Fig. 5, comparing an-

118.75

[

alytical resonant frequencies to W-MRTD resonant frequencies
- are given in Table I.

IV. CONCLUSIONS

A W-MRTD dispersion analysis, consistently confirmed by

1125

numerical results, showed that there are strictly no spurious
modes in this scheme, despite earlier claims of the opposite.
Then, the source of misconstruction was identified as being
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the fact that an effective Nyquist limit for W-MRTD is located

. within the support of the Battle—Lemarie wavelet function.
Therefore, a delta type excitation of wavelet terms excites
modes with wavenumbers abov§g;, that eventually produce
alias frequencies and corrupt the performance of the scheme.

_ . _ _ Properly restricting the excitation within the range of W-MRTD
Fig. 5. Field magnitude for the 1-D case study and normalized Wavenuml?ﬁ%persion Iinearity allows for the accurate simulation of mi-

(according to the W-MRTD dispersion relation) as a function of frequency.

suggests. A graphical presentation of these arguments is pro-
vided by Fig. 5, where the spectrum of the electric field, when
a scaling and wavelet excitation is used, is plotted along withm
the W-MRTD dispersion curve. Evidently, each resonant fre-
quency can be assigned to the wavenumber of one of the si¥l
excited modes, given b = nx/4,n = 1,2,3,5,6, 7. It

is also shown that the numerical results of the simulation are[3]
in absolute agreement with the theoretical prediction of the dis-
persion behavior of the scheme. Thus, it is concluded that they,
single branch of Fig. 1 fully describes the W-MRTD dispersion

crowave structures at relatively coarse discretization rates.
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