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On the Existence of Spurious Modes in
Battle–Lemarie Based MRTD

Costas D. Sarris and Linda P. B. Katehi, Fellow, IEEE

Abstract—A distinction between the effects of inaccuracy of
the Battle–Lemarie wavelet based multiresolution time domain
(W-MRTD) scheme for high spatial frequencies and spurious
modes is drawn and explained in this letter. Investigating the
performance of the scheme under various excitation methods, it
is concluded that what was described earlier in the literature as
a spurious mode effect actually corresponds to alias frequencies
stemming from the excitation of higher order modes by the
wavelets, given that the latter are spectrally supported at higher
wavenumbers.

Index Terms—MRTD, multiresolution analysis, numerical dis-
persion.

I. INTRODUCTION

SINCE its original introduction to the field of time domain
microwave circuit characterization [1], multiresolution

analysis has attracted a wide interest among researchers,
prompting the formulation of several numerical techniques
and the investigation of different wavelet bases. In addition,
the dispersion analysis of the Battle–Lemarie wavelet based
multiresolution time domain (W-MRTD) scheme (in [1], [2])
has demonstrated its high linearity, that practically allows for
a relatively coarse discretization rate. However, little attention
has been devoted to the explanation of the dispersion properties
of MRTD, by connecting its numerical performance to wavelet
theory elements and thus gaining better understanding of its
advantages but also its limitations. In this letter, a comprehen-
sive interpretation of the dispersion behavior of W-MRTD,
including the “spurious mode” effect which was cited in [1],
is provided. Using the result of a one-dimensional dispersion
analysis, validated by a simple numerical example, it is con-
cluded that there are strictly no spurious modes in W-MRTD.

II. DISPERSIONANALYSIS

A one dimensional case is chosen as an appropriate vehicle
for the intelligible presentation of the subtle aspects of this work.
In particular, the equations
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are considered and discretized following the moment method
based technique of [1]. As an example, keeping the notation
in consistence with [1], the electric field component is first
expanded in terms of Battle–Lemarie scaling and wavelet

functions in space and pulse functions in time:

(3)

being space cell and time step indices respectively. Subse-
quently, the discretization of (1) and (2) via Galerkin’s method
leads to update equations with respect to electric and magnetic
field scaling and wavelet expansion coefficients, of the generic
form

(4)

with for the electric field and of a similar (dual)
form for the magnetic field. The weighted sums in (4) repre-
sent the spatial differentiation operator in the Battle–Lemarie
basis and include grid points to the left and to the right of a
scaling/wavelet field node, that are allowed to contribute to its
update (for a certain accuracy). The coefficients of these sums
are given in [1].

For the dispersion analysis of this scheme, the conventional
Fourier method [4] is adapted to the case of a multilevel
basis, as described extensively in [3]. In particular, by Fourier
transforming electric and magnetic field expansions, the expan-
sion coefficients are expressed as inverse Fourier transforms,
in terms of their spatio-temporal harmonics ,

. Explicitly determining the latter, yields

(5)

where denotes a Fourier transform. Equivalently, the disper-
sion relation can be derived by substituting in any two of the
four update equations

(6)

where , and also
, are normalized wavenumber and fre-

quency variables. Thus formulating a homogeneous system and
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requiring that it admit nontrivial solutions, leads to an expres-
sion of the form

(7)

where is the system matrix. This procedure yields the
—dispersion relationship which is plotted in Fig. 1,

along with the S-MRTD case, for
and stencil . Compared to the W-MRTD dis-

persion diagrams of [1], the one in Fig. 1 has a single branch
instead of two branches. This is a consequence of using a modi-
fied Fourier method in our analysis and employing the relation-
ship of the Fourier transform of scaling and wavelet functions to
reduce the dimensionality of (7). In fact, the additional branch
of the dispersion diagram of [1] corresponds to modes that are
not excited in an MRTD mesh, as a derivation of their corre-
sponding eigenvectors can show [3].

In order to theoretically estimate the performance of
W-MRTD based on the results of this dispersion analysis, the
spectral (wavenumber) domain form of the Battle–Lemarie
scaling and wavelet functions [ , respectively],
depicted in Fig. 2, is inspected. It is noted that the “knee” of
the W-MRTD dispersion curve (or itseffectiveNyquist limit)
is at (its exact value is stencil-dependent). Fur-
thermore, the intervals and define the
3 dB bandwidth for and respectively. Hence, if the initial
data (excitation) is composed of a wavelet function, the range
of the simulated wavenumbers extends beyond the effective
Nyquist limit of the scheme and therefore, frequencies that
correspond to wavenumbers above fold back, appearing
at low frequency images of theirs (aliasing). However, this is
not a spurious mode effect and is rather equivalent to what
would happen if an FDTD scheme were used to simulate
wavenumbers above its Nyquist limit ( ).

III. N UMERICAL RESULTS

For the purpose of supporting the conclusion of our disper-
sion analysis that no spurious modes exist in W-MRTD and
to provide a framework of understanding for phenomena that
were misconstrued as such, a simple numerical experiment with
easily reproducible results and comparable to the one presented
in [1] is analyzed. In particular, the one dimensional case study
of a domain with four cells defined by three interior scaling
functions for the electric field, as shown in Fig. 3, is considered.
The hard boundary conditions are imposed by means of image
theory and therefore, boundary scaling function terms (shown
in Fig. 3 with dashed lines) are set equal to zero (because they
are even symmetric with respect to the hard boundary). Electric
field wavelet and magnetic field terms are accordingly defined.

Initially, this 1-D cavity is excited by a scaling function
placed in the middle of the domain. The field is sampled at
integer nodes of the domain and that is why the fourth and the
eighth mode (for which ) are not extracted in any
case. By Fourier transforming the time domain data, the electric
field magnitude in the frequency domain is computed and
plotted in Fig. 4 with a continuous line. As expected, modes
corresponding to wavenumbers are mainly excited,
while higher order modes are also excited at significantly lower

Fig. 1. Dispersion curves for S-MRTD and W-MRTD. FDTD and linear
dispersion relationships are shown for comparison.

Fig. 2. Spectral domain representation of Battle–Lemarie scaling and mother
wavelet function. Evidently,X = �� is the 3-dB point for bothj�̂j, j ̂j.

Fig. 3. Computational domain for the 1-D case study.

magnitudes, due to the spectral “tail” of the scaling function
beyond . It is noted that the result of this experiment
confirms the absence of the modes corresponding to the second
branch of the W-MRTD dispersion diagram of [1] and is
consistent with the dispersion analysis of this work.

Next, a scaling and a wavelet function are used as an exci-
tation. Now that the spatial frequencies of the initial data ex-
tend from to , all six modes ( 2, 3 and 5, 6,
7) are almost equally excited. The corresponding electric field
spectrum is indicated in Fig. 4 by a dashed line. The mode de-
noted by in this figure may be interpreted as spurious.
In fact, it comes from the inaccurate determination of the sev-
enth mode by the scheme, the error being equal to25.692%.
It is noted though, that when the excitation is properly con-
fined to spatial frequencies lower than , this mode is lim-
ited to an insignificant level, as the scaling excitation test case
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Fig. 4. Semi-logarithmic plot of the electric field magnitude for the case study
of Fig. 3, under scaling (—: continuous line) and scaling and wavelet (- -: dashed
line) excitation.

Fig. 5. Field magnitude for the 1-D case study and normalized wavenumber
(according to the W-MRTD dispersion relation) as a function of frequency.

suggests. A graphical presentation of these arguments is pro-
vided by Fig. 5, where the spectrum of the electric field, when
a scaling and wavelet excitation is used, is plotted along with
the W-MRTD dispersion curve. Evidently, each resonant fre-
quency can be assigned to the wavenumber of one of the six
excited modes, given by , , 2, 3, 5, 6, 7. It
is also shown that the numerical results of the simulation are
in absolute agreement with the theoretical prediction of the dis-
persion behavior of the scheme. Thus, it is concluded that the
single branch of Fig. 1 fully describes the W-MRTD dispersion

TABLE I
RESONANT FREQUENCIES(IN GHz) AND RELATIVE ERROR (1-D

CAVITY /SCALING +WAVELET EXCITATION)

properties. As for the seventh mode resonant frequency, it is ob-
served that since its corresponding wavenumber is above the ef-
fective Nyquist limit of W-MRTD, it is reflected on its alias, just
in front of the fifth mode resonant frequency. Finally, numerical
values for all points that are indicated in Fig. 5, comparing an-
alytical resonant frequencies to W-MRTD resonant frequencies
are given in Table I.

IV. CONCLUSIONS

A W-MRTD dispersion analysis, consistently confirmed by
numerical results, showed that there are strictly no spurious
modes in this scheme, despite earlier claims of the opposite.
Then, the source of misconstruction was identified as being
the fact that an effective Nyquist limit for W-MRTD is located
within the support of the Battle–Lemarie wavelet function.
Therefore, a delta type excitation of wavelet terms excites
modes with wavenumbers above that eventually produce
alias frequencies and corrupt the performance of the scheme.
Properly restricting the excitation within the range of W-MRTD
dispersion linearity allows for the accurate simulation of mi-
crowave structures at relatively coarse discretization rates.
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